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Abstract. At the moment, the tendency in the composites field, is to use natural resins and fibers to obtain 

„environmental friendly” materials, that are compostable and biodegradable. In this paper there is an 

experimental study of the depletion capacity of the vibration from the composite beams, using the 

hardener made of cotton, flax, hemp, silk textile and the three types of the Dammar hybrid resin matrix. 

The damping factor and the eigenfrequency of the vibrations was determined experimentally for these 

bars. Based on the acquired results, the dynamic elasticity modulus and the loss factor were calculated, 

for each composite material studied.  

 

Keywords: composite materials, natural fibers, damping factor, eigenfrequency 

 

1. Introduction 
In the study of the vibration an important role is the damping capacity that reduces noise and 

contributes to the smooth operation of machines and the suppression of the self-excitation vibrations. 

The study on damping materials is important because it significantly influences the behavior of vibrating 

systems, especially when operating close to resonant frequencies or when they have to pass through 

resonance zones during unstable operating regimes. The experimental study is necessary because the 

damping properties of many materials, primarily new, are not yet properly known. 

Damping process results from physical processes occurring in solid body materials during their 

yielding [1, 2]. The internal damping of composite materials is influenced by fissures and deteriorations, 

the orientation of the fibers, the chemical composition and physical properties of the matrix and the 

treatment of the fibers surface. The explanation of the physical phenomena regarding internal friction in 

the composite materials is a very complex matter to which a lot of research is still devoted. The damping 

of materials and various damping theories relating to unidirectional composite materials can be found, 

for example, in [3, 4]. 

Experiments conducted by many researchers have proven that the behavior of composite materials 

deviates from the idea of viscous damping. These findings increased interest in the development of non 

–viscous damping models, which would represent the dissipation of energy in a more general way. 

Various approaches to the implementation of material damping in mathematical models are reported in 

the academic literature. 

In [5] a method of identifying viscous damping parameters is provided when the actual damping of 

the structure is not viscous. The methods presented allows, from complex modes and natural frequencies, 

to obtain a complete but disproportionate viscous depletion matrix. In [6] a procedure for identifying the 

damping mechanism based on the exponential relaxation function is developed and discussed. This 

method involves knowing the mass matrix of the system and uses experimentally identified complex 

modes and complex natural frequencies. The analysis is limited to systems that exhibit linear behavior 

and to the assumption that damping is light. An alternative hysterical damping pattern is discussed in [7] 

and [8] used a generalized Maxwell theoretical model to analyze the behavior of viscoelastic joints and  
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introduced a method of experimentally identifying model parameters based on the use of a hysterical 

curve. Different approaches developed lately for identifying damping parameters and evaluating them 

are made in [9-11]. 

Recently, there is a growing interest in investigating renewable resources. The development of high-

performance engineering products made from composites reinforced with natural fiber has gradually 

increased. Damping properties have been studied for natural rubber composites reinforced with short 

coir fibers (coconut) [12], polyester reinforced with banana fibers [13], polypropylene reinforced with 

flax and hemp fibers [14], polyester reinforced with hybrid fiber ramie/glass [15], with Luffa cylindrica 

[16] or Sansevieria cylindrica [17]. The damping mechanism of fiber-reinforced composites is different 

from that of ordinary metals. Energy dissipation approaches in fiber-reinforced composites mainly 

include the viscoelastic characteristics of the matrix and fibers, damping due to the interface region and 

matrix cracks, and viscos-plastic damping [18, 19]). Currently there is also a tendency to replace 

synthetic resins with natural or hybrid resins. The damping properties of dammar-based hybrid resin 

matrix composite materials reinforced with flax, cotton or hemp fabrics are studied in [20], and those 

reinforced with paper waste are studied in [21]. 

In these studies, the effects of cross-sectional fiber orientation and their volume fraction on depletion 

coefficients were analyzed. The results of these analyses indicated that the longitudinal loss factor is 

determinated by the shape of the reinforcing fibers, and the orientation of the fibers and the stacking 

sequence significantly affect the damping behavior. It has been observed that the damping can be 

improved with a slight decrease in the rigidity of the composite by generating a greater number of 

interfaces. Various methods of improving damping by reducing the diameter of the fiber used are 

studied, without compromising the dimensions of the composite and the volume fraction of the fibers 

[22]. It has been found that composites reinforced with short fibers have a greater energy dissipation 

capacity than that of long fibers due to the presence of several fiber heads. This is explained by the fact 

that in composites reinforced with short fibers, the number of interfaces between matrix and fibers that 

are subjected to elastic and plastic deformations [23] is higher. 

The vibration depletion capacity for composite bars with the matrix of three types of Dammar hybrid 

resins and reinforced with fabrics made of cotton, linen, hemp and silk is studied in this work. The 

depletion factor and the eigenfrequency of vibrations at the bars made of these materials, which were 

recessed at one end and free at the other, was experimentally determined. Based on the results obtained, 

in the case of each composite material studied, the dynamic elasticity modulus and the loss factor were 

calculated. 

 

2. Materials and methods 
Bars are structural elements often encountered in practice and are usually studied with the Euler-

Bernoulli, model based on the assumption that a flat and normal section on the medium fiber before 

deformation, remains flat and normal on the average fiber throughout the deformation. Thus, the 

equation of free and unamortized transverse vibrations of the bar is [24, 25]: 
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where: 

-  is the density, and E is the modulus of elasticity for the bar material; 

- A  is the area of the bar section, and I  is the moment of inertia of the bar section. 
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Damping is taken into account by introducing into the equation of motion some terms of the form 
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Solving the equation when the previous three terms are present is difficult. Therefore, it will be 

considered the case when the equation contains only one of the three themes, for example 
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and which corresponds to the so-called Kelvin-Voigt model of internal damping, one of the models most 

used for the study of vibration damping  [27, 28]. In this case the equation of motion becomes: 
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The initial conditions are given by: 

- the state of movements at the initial moment 

)()0;( xfxw = ;            (4) 

- the state of the speed at the initial moment 

)()0;( xgxw =
•

.            (5) 

 

Equation (3) is solved with the method of separating variables by looking for the solution as a product 

of two functions: 

)()(),( tTxWtxw = ,              (6) 

 

where the )(xW  function depends only on the x variable, and the )(tT  function depends only on time. 

Replacing the relation (6) in equation (3), it can be processed to the form: 
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The term to the left of equality (7) is a function only of the variable x , and the term on the right is 

the function of time only Under these circumstances, equality (7) is true only if the two terms are equal 

to a constant, denoted by 4  (to simplify calculations). 

Consequently 
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The general solution of equation (8) is: 

 

                                             )cos()sin()cosh()sinh()( 4321 xCxCxCxCxW  +++= .     (10) 

 

The constants shall be determined from the limit conditions. A common case encountered in practice 

is that of the bar with a recess at one end. Considering the embedding for 0=x , results in the conditions: 
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From which you get: 
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If at the end with Lx =  the bar is free we have the conditions: 
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Then the resulting system: 
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For this system to have different solutions from the trivial solution, it must be 

 

1)cos()cosh( −=LL  .             (15) 

 

The string of solutions to this equation is: 

 

875104069.11 =L , 694091133.42 =L , 854757438.73 =L , 99554073.104 =L ,     

13716839.145 =L , 27875953.176 =L , 42035225.207 =L , 56194490.238 =L , 

70353756.269 =L ,         84513021.2910 =L , 

 

and for 10n  the formula can be used 
2
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The sequence of proper functions in this case is form: 
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Constants  Cn  which appear in relations (16) are determined by the normalization conditions for their 

own functions. 

For each natural number, the characteristic equation attached to the equation (9) is: 
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There is a natural number 0n  so the discriminant  0n  for 0nn  , and 0n  for 0nn  . 

Therefore, the vibration of the bar will be: 
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In general, the presence of damping, the free vibration of the bar is the shape (18), each of its own 

modes of vibration having its own damping factor. The term 
•

wc02  leads to a constant damping factor, 

the term 
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 leads to a damping factor inversely proportional to the square of the length of the 

bar, and in the presence of the term 
4
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•

 the damping factor is inversely proportional to the fourth 

power of the bar length. 

The determination of the damping mechanism for each test piece and material can only be done by 

experimental determinations. 

 

2.1. Carrying out the test pieces for the vibration test 

Tiles based on Dammar natural resin were made. The chemical and structural composition of 

Dammar are analyzed in [29, 30], while the mechanical properties for composites made of hybrid 

Dammar based resins reinforced with natural fiber fabrics are studied in [20, 31]. Three hybrid resins 

obtained by mixing natural Dammar resin with Resoltech 1050 synthetic resin and the corresponding 

hardener 1058S [32] were used for the composite materials. The three hybrid resins are: 

- HD50 hybrid resin with 50% synthetic resin and 50% natural Dammar resin; 

- HD60 hybrid resin with 40 % synthetic resin and 60 % natural Dammar resin; 

- HD70 hybrid resin with 30 % synthetic resin and 70 % natural Dammar resin. 

Based on these hybrid resins, composite slabs reinforced were made: 

- 22 layers of cotton fabric, with specific mass 130 g/m2. These composite materials are abbreviated 

B-HD50, B-HD60 and B-HD70; 

- 11 layers of fabric mixed with 40% cotton and 60% flax, with specific mass 240g/m2. These 

materials will be considered reinforced with flax and are abbreviated as I-HD50, I-HD60 and I-HD70; 

- 18 layers of fabric mixed with 60% silk and 40% cotton, with specific mass 160 g/m2. These 

materials will be considered reinforced with silk and are abbreviated as: M-HD50, M-HD60 and M-

HD70; 

- 6 layers of hemp, with specific mass 350g/m2. These composite materials are abbreviated as:  

C-HD50, C-HD60 and C-HD70. 

The main mechanical properties of the fibers are being presented in Table 1. 

 

https://revmaterialeplastice.ro/


MATERIALE  PLASTICE                                                                                                                                                                
https://revmaterialeplastice.ro 

https://doi.org/10.37358/Mat.Plast.1964 

Mater. Plast., 59 (2), 2022, 100-110                                                           105                                  https://doi.org/10.37358/MP.22.2.5589 

 

Table 1. The main mechanical properties of the fibers used (adapted by [33-36] 
Fiber Density 

[g/cm3] 

Elongation 

[%] 

Tensile strength 

[MPa] 

Elastic Modulus 

[GPa] 

Cotton 1.5-1.6 7.0-9.0 287-800 5.5-12.6 

Flax 1.5 2.7-3.2 345-1100 27-39 

Hemp 1.4-1.5 2-4 310-750 30-60 

Silk 1.3-1.4 18-33 160-260 4-6 

The number of layers was chosen so that the slabs were as close as possible. Table 2 shows the 

characteristics of plates obtained. 

 

Table 2. The characteristics of slabs 
Composite type Mass proportion of 

resin 

Bar thickness 

[mm] 

Density 

[g/cm3] 

B-HD50 0.54 5.3 1.23 

B-HD60 0.55 5.4 1.20 

B-HD70 0.54 5.3 1.18 

I-HD50 0.54 5.4 1.26 

I-HD60 0.53 5.4 1.24 

I-HD70 0.53 5.3 1.21 

M-HD50 0.50 5.5 1.29 

M-HD60 0.49 5.5 1.26 

M-HD70 0.50 5.5 1.24 

C-HD50 0.56 5.4 1.16 

C-HD60 0.54 5.3 1.14 

C-HD70 0.55 5.3 1.13 

 

Sets of test pieces were cut from the slabs. The all test pieces’ dimensions, both those made of hybrid 

resins and those made of composite materials were: 250 mm long, 25 mm wide [37]. 

In Figure 1a the three types of hybrid resins are being presented, while in Figure 1b specimens of all 

types of composite materials made with 60% Dammar hybrid resin matrix are presented. 

 

 
Figure 1. Test pieces from those three types of hybrid resins (a); test pieces of all  

types of composite materials made with Dammar hybrid resin matrix (b) 

 

3. Results and discussions 
For the experimental study of vibration behavior, from each set of test pieces, 3 test pieces were 

randomly selected. The damping coefficient wad determined experimentally for these sets of test pieces, 

which were embedded at one end, and the vibration measurement was made at the free end. The free 

length for each bar studied was 120 mm, 140 mm, 160 mm,180 mm and 200 mm. 

The SPIDER 8 data acquisition system with NEXUS 2692-A-0I4 signal conditioner was used for 

measurements, and the eigenfrequency measurement range was set from 0-2.400Hz. The accelerometer 

was used with a sensitivity of 0.04 pC/ms-2, and the given set of purchases was made using CATMAN 

EASY software. 

Figure 2 shows an experimental vibration recording for a hemp-reinforced specimen, C-HD50 and 

120 mm free length. This recording was chosen because it is the one with the highest vibration 

eigenfrequency. 
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Figure 2.  Experimental vibration recording for a hemp-reinforced 

test tube, C-HD50 and 120 mm free length 

 

Figure 3 shows how to determine the depreciation factor for the Figure 2 recording. The 

determination of the damping factor per unit mass of the bar was made with the relation [20, 25]: 

 

,ln
1

2

1

12 w

w

tt −
=          (23) 

where 

- t1 it is the time for the maximum of the beginning, and t2 the moment of time for the maximum end 

of the area in the experimentally recorded diagram, used to calculate the damping factor; 

- w1 is the maximum value for the moment of time t1, and w2 is the maximum value at the moment 

of time t2. 

 
Figure 3. Damping factor determination for the C-HD50 

hemp-reinforced specimen and the free length of 120 mm 

 

Tables 3-6 show the average values of the damping factor and the eigenfrequency, measured 

experimentally, for the four sets of samples. 

 

Table 3. Damping factor and eigenfrequency of cotton-reinforced specimens 
   Resin 

 

Length 

B-HD50 B-HD60 B-HD70 

Damping factor, [s-

1] 

Eigen-frequency, 

[Hz] 

Damping factor, 

[s-1] 

Eigen-frequency, 

[Hz] 

Damping factor, 

[s-1] 

Eigen-frequency, 

[Hz] 

120 mm 21.16 96.4 22.24 91.3 23.99 81.4 

140 mm 15.76 70.4 16.99 65.0 17.76 58.8 

160 mm 12.33 54.1 13.89 51.3 14.33 44.3 

180 mm 9.54 41.7 9.74 40.6 11.28 35.0 

200 mm 7.57 34.1 8.88 32.3 9.39 28.9 
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Table 4. Damping factor and eigenfrequency of flax-reinforced specimens 
Resin 

 

Length 

I-HD50 I-HD60 I-HD70 

Damping factor 

[s-1] 

Eigen-frequency 

[Hz] 

Damping factor 

[s-1] 

Eigen-frequency 

[Hz] 

Damping factor 

[s-1] 

Eigen-frequency 

[Hz] 

120 

mm 

25.43 122.5 30.33 118.8 35.89 112.2 

140 

mm 

18.87 89.6 22.83 87.6 27.80 81.6 

160 

mm 

14.29 70.2 17.60 67.8 21.09 61.4 

180 

mm 

10.55 53.8 13.39 50.2 15.61 47.9 

200 

mm 

8.77 43.4 10.32 41.1 12.27 39.1 

 

Table 5. Damping factor and eigenfrequency of silk-reinforced specimens 
Resin 

 

Length 

M-HD50 M-HD60 M-HD70 

Damping factor 

[s-1] 

Eigen-frequency 

[Hz] 

Damping factor 

[s-1] 

Eigen-frequency 

[Hz] 

Damping factor 

[s-1] 

Eigen-frequency 

[Hz] 

120 

mm 

28.31 90.6 30.96 87.6 33.67 77.4 

140 

mm 

22.50 65.4 23.78 63.6 24.36 55.8 

160 

mm 

17.05 49.8 18.48 48.5 19.61 44.1 

180 

mm 

13.61 39.2 14.38 37.9 15.59 33.9 

200 

mm 

10.31 31.9 11.26 30.1 12.71 27.5 

 

Table 6. Damping factor and eigenfrequency of hemp-reinforced specimens 
Resin 

 

Length 

C-HD50 C-HD60 C-HD70 

Damping factor 

[s-1] 

Eigen-frequency 

[Hz] 

Damping factor 

[s-1] 

Eigen-frequency 

[Hz] 

Damping factor 

[s-1] 

Eigen-frequency 

[Hz] 

120 

mm 

20.43 141.2 22.42 136.4 24.31 123.1 

140 

mm 

15.85 103.6 17.11 100.8 18.11 90.8 

160 

mm 

12.06 78.9 13.71 75.8 15.16 69.2 

180 

mm 

9.76 61.5 10.39 59.3 11.24 53.5 

200 

mm 

7.91 50.6 8.18 46.9 8.53 43.7 

 

The damping factor characterizes the vibration damping capacity for the studied bars and depends 

on the length of the vibrating bar. In order to assess the damping capacity of the materials from the 

specimens are made, the loss factor , is determined with the relation [20]: 

    



 = ,          (24) 

where the modulus of elasticity is E  with the relation [38]. 

 

24

42248

h

l
E




= ,           (25) 

where  is density,  represents the eigenfrequency, l  is the bar length, h is bar thickness, and  depends 

on the limits conditions. For the built-in bar at one end and free at the other we have =1.875. 

In Table 7 the experimental results are presented for all the studied specimens, obtained as an average 

of the values calculated for each free length considered. 
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Table 7. Experimental results for all studied test pieces, obtained  

as an average of the values calculates for each free length considered 
Composite type Loss factor 

 

Modulus of elasticity 

E [MPa]  

B-HD50 0.0714 3174 

B-HD60 0.0822 2666 

B-HD70 0.0998 2134 

I-HD50 0.0650 5110 

I-HD60 0.0824 4361 

I-HD70 0.1047 4042 

M-HD50 0.1063 2726 

M-HD60 0.1186 2479 

M-HD70 0.1425 1936 

C-HD50 0.0488 6202 

C-HD60 0.0551 5841 

C-HD70 0.0650 4974 

 

4. Conclusions 
The mechanical behavior of composites is being influenced by the components of the materials, but 

also by the proportions and geometrical arrangements of those. Natural fibers can have different 

properties which are influenced by climatic conditions, soil, harvesting and storage conditions. 

Therefore, the mechanical properties of composite reinforced materials with natural fibers must be made 

using experimental methods. 

The analysis of the obtained data shows that the eigenfrequency is proportional to the inverse of the 

square of the free length of the bar. A similar dependence is obtained for the depreciation factor. 

Therefore, the damping factor is proportional to the vibration pulsation. This shows that the type of 

hysteretic damping is predominant and the damping force is proportional to the bending speed of the 

bar. 

The damping capacity increases with the proportion of Dammar in the hybrid resin, the lowest values 

for the loss factor were obtained for the composite materials with the hybrid resin HD50, and the highest 

were obtained for the composite materials with the hybrid resin HD70. So the dynamic modulus of 

elasticity the trend is reversed, the lowest values were obtained for composite materials with HD70 

hybrid resin, and the highest were obtained for those made with HD50 resin. 

The mechanical properties of the composite materials made, depend on the reinforced materials. The 

highest values of the modulus of elasticity were obtained for the reinforced materials with hemp, but 

still these have the lowest loss factor. In change with that, the highest values of the loss factor were 

obtained for the reinforced composite materials with silk, these ones have the lowest modulus of 

elasticity. To conclude the loss factor variation is reversed with the one from the modulus of elasticity. 
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